
Saint-Venant end effects in multilayered piezoelectric laminates

Jiann-Quo Tarn a,*, Li-Jeng Huang b

a Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan
b Department of Civil Engineering, National Kaohsiung University of Applied Science Kaohsiung 80701, Taiwan

Received 26 September 2001; received in revised form 2 July 2002

Abstract

The Saint-Venant end effects and stress decay in multilayered laminates of piezoelectric materials are studied. A state

space approach is developed in the context of generalized plane strain. By means of matrix algebra and transfer matrix,

the characteristics of the stress decay in 2-D piezoelectric strips and laminates are examined. Their elastic counterparts

are included as special cases. Evaluation of the characteristic decay length for typical materials shows that the Saint-

Venant end effects are significant. It also indicates that the analysis based on the plane strain assumption is misleading.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to increasing use of piezoelectric ceramics and polymers, mechanics of piezoelectric materials has
attracted considerable attention. The problem of stress decay in an anisotropic piezoelectric material,
known as the Saint-Venant end effect, is of fundamental importance in strain measurement. An under-
standing of the characteristics of stress decay is useful in the design of sensors and piezoelectric specimens.
When a piezoelectric body is subjected to electromechanical loading, the electric and mechanical fields
interact. Because of electromechanical interaction and combined effects of anisotropy and lamination,
electroelastic analysis of a piezoelectric laminate is much more involved than its elastic counterpart. A great
amount of work concerning the response of laminated structures with piezoelectric layers has been pub-
lished (see, for example, the review articles by Saravanos and Heyliger, 1999; Gopinathan et al., 2000 and
the references therein). In dealing with stress decay in laminates, numerical techniques such as the dis-
placement-based finite element method are not very useful because the field variables vary drastically near
the ends. In order to develop a computational model the nature of the decay must be captured analytically.
Although the stress decay in an anisotropic elastic material has been under extensive study (see Horgan and
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Knowles, 1983; Horgan, 1989, 1996; Ting, 1996, and the references therein), few analyses in the case of a
piezoelectric material have been reported. Among them, Batra and Yang (1995) extended Saint-Venant’s
principle of elasticity (Toupin, 1965) to linear piezoelectricity and showed that the energy stored in the
portion of a prismatic bar beyond a distance s from the loaded end decreases exponentially with the distance
s. Ruan et al. (2000) employed the stress function approach to investigate the Saint-Venant end effects in a
2-D semi-infinite piezoceramic strip. In order to simplify the analysis, they ignored the antiplane field
variables outright and assumed that the gradient of the electric potential is smaller in the axial direction
than in the thickness direction. It is known that the stress function approach is ineffective in treating a
multilayered system (Wang et al., 2000; Tarn and Wang, 2001). Moreover, analysis of piezoelectric strips
based on plane strain or plane stress assumption is questionable.

In this paper we develop a state space approach for the Saint-Venant end effects in piezoelectric lami-
nates in the context of generalized plane strain (Lekhnitskii, 1981; Ting, 1996). The piezoelectric material
considered belongs to the monoclinic system of class 2 (Nye, 1957) of which the orthorhombic system is a
special case. Stress singularity is known to occur at the free edges of a laminate. Herein the stress decay
away from the edges is of primary concern. Investigation of the free-edge singularity is beyond the scope of
the present study. When the laminate strip is subjected to self-equilibrated loads at the ends, the stress and
strain are independent of the longitudinal coordinate x2, but the displacements depend on x2 and all the field
variables––antiplane as well as inplane––enter the picture. In a state space formulation the field variables
are not eliminated, rather, the primary state variables are identified and the field equations are cast into a
state equation. For a piezoelectric laminate the primary state variables are the displacements, transverse
stresses, electric potential and electric displacement in the thickness direction because the interfacial con-
tinuity and boundary conditions are directly associated with them (Tarn, 2001, 2002a,b). Guided by pre-
vious studies for an elastic material (Horgan, 1989, 1996; Ting, 1996; Wang et al., 2000) and the theoretical
basis by Batra and Yang (1995), we seek an eigensolution in the form of exponential decay functions of the
distance from the ends. The smallest decay factor is a measure of the characteristic decay length and the
attenuation rate of the end effects. The characters of the stress decay are reflected through the eigenvalues
and eigenmodes of the problem. In determining the eigensolution for a piezoelectric laminate, the transfer
matrix is employed to satisfy the interfacial continuity and boundary conditions. The advantage is that it
requires only a systematic operation of 8� 8 matrices, regardless of the number of layers. To understand
the characteristics of the end effects, the self-equilibrated fields and decay lengths in 2-D homogeneous
piezoelectric strips and laminates with integrated piezoelectric layers are evaluated for typical piezoelectric
materials. The results show that the Saint-Venant end effects are significant and decay length far-reaching.
Mixed modes occur in general; only for a special class of the orthorhombic piezoelectric material do the
inplane and antiplane fields uncouple. More importantly, plane strain or plane stress assumption is invalid
even when the piezoelectric strip is subjected to 2-D electromechanical loading. Antiplane field variables
must not be neglected in the formulation. The results obtained herein are useful in developing a numerical
model for versatile computation.

2. State space formulation

Consider a piezoelectric laminate composed of n layers in a self-equilibrated state (Fig. 1). The piezo-
electric material belongs to monoclinic system of class 2 with the x3-axis being the polarization direction
(Nye, 1957). The constitutive equations of the material are

e

D

� �
k

¼ S d

dT j

� �
k

r

U

� �
k

; ð1Þ
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where

e ¼ e11 e22 e33 2e23 2e13 2e12½ �T; D ¼ D1 D2 D3½ �T;

r ¼ r11 r22 r33 r23 r13 r12½ �T; U ¼ � /;1 /;2 /;3

� �T
;

eij and rij are the strain and stress tensors, / is the electric potential, Di is the electric displacement vector.
The explicit expression of the material matrices S, d and j are given in Appendix A, in which sij are the 13
elastic compliances measured at a constant electric field, jij the permittivity constants measured at constant
stress, dij the coefficients of the converse piezoelectric effect. The comma denotes the partial differentiation
with respect to the suffix variables. The subscript k denotes the kth layer, k runs from 1 to n.

Eq. (1) is the constitutive equations for various classes of piezoelectric materials, including among
others, the orthorhombic system of class mm2 by setting s16 ¼ s26 ¼ s36 ¼ s45 ¼ d14 ¼ d25 ¼ d36 ¼ j12 ¼ 0,
and those of class 6mm by setting, additionally, s11 ¼ s22, s13 ¼ s23, s44 ¼ s55, s66 ¼ 2ðs11 � s12Þ, d15 ¼ d24,
d31 ¼ d32, j11 ¼ j22. The equations of elasticity are coupled to the equations of electrostatics through dij
(Tiersten, 1969). The constitutive equations of a monoclinic anisotropic elastic material, having one plane of
symmetry parallel to the planes x3 ¼ constant, are a special case of Eq. (1) with dij ¼ 0.

The strain–displacement relations are

eij ¼ ðui;j þ uj;iÞ=2: ð2Þ

The equations of equilibrium in the absence of body forces are

rij;j ¼ 0: ð3Þ
The equations of electrostatics without free charges are

Di;i ¼ 0: ð4Þ
For the problem under study the laminate is subjected to self-equilibrated loads at x1 ¼ 0 and a (Fig. 1).
The top and bottom surfaces are free from traction and electric voltage or charge such that

r13 ¼ r23 ¼ r33 ¼ 0; and / ¼ 0 or D3 ¼ 0 on x3 ¼ 	h; ð5Þ
where / ¼ 0 on a grounded surface, D3 ¼ 0 on an electric-insulated surface.

The continuity conditions on the interface x3 ¼ zk, ðk ¼ 1; 2; . . . ; n� 1Þ require

u1 u2 u3 /½ �k ¼ u1 u2 u3 /½ �kþ1; ð6Þ

r13 r23 r33 D3½ �k ¼ r13 r23 r33 D3½ �kþ1: ð7Þ

In order to make the formulation concise, we separate the field variables into the transverse components
and those in the x1–x2 plane (denoted by a subscript p), and rewrite Eq. (1) as

ep ¼ Spprp þ Sp3r33 � dp/;3; ð8Þ

Fig. 1. Schematic of a piezoelectric laminate.
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e33 ¼ ST
p3rp þ s33r33 � d33/;3; ð9Þ

es ¼ Sssrs � dsL/; ð10Þ

Dp ¼ dTs rs � jL/; ð11Þ

D3 ¼ dTp rp þ d33r33 � j33/;3; ð12Þ

where

ep ¼ e11 e22 2e12½ �T; rp ¼ r11 r22 r12½ �T;

es ¼ 2e13 2e23½ �T; rs ¼ r13 r23½ �T; Dp ¼ D1 D2½ �T;

Spp ¼
s11 s12 s16
s12 s22 s26
s16 s26 s66

24 35; Sp3 ¼
s13
s23
s36

24 35; dp ¼
d31
d32
d36

24 35;
Sss ¼

s55 s45
s45 s44

� �
; ds ¼

d15 d25
d14 d24

� �
; j ¼ j11 j12

j12 j22

� �
; L ¼ o=ox1

o=ox2

� �
:

In the formulation u1, u2, u3, /, rs, r33 and D3 are taken to be the primary state variables and rp and Dp are
expressed in terms of them. To this end, we arrange the basic equations into

u;3 ¼ �Lu3 � dsL/ þ Sssrs; ð13Þ

u3;3 ¼ eSST
p3S

�1
pp Lpuþ ðess33 � ST

p3S
�1
pp
eSSp3Þr33 þ edd33D3; ð14Þ

/;3 ¼ ejj�1
33 d

T
pS

�1
pp Lpuþ edd33r33 � ejj�1

33 D3; ð15Þ

rs;3 ¼ �LT
p ½S

�1
pp ðGLpu� eSSp3r33 � ejj�1

33 dpD3Þ�; ð16Þ

r33;3 ¼ �LTrs; ð17Þ

D3;3 ¼ LTðjL/ � dT
s rsÞ; ð18Þ

rp ¼ S�1
pp ðGLpu� eSSp3r33 � ejj�1

33 dpD3Þ; ð19Þ

Dp ¼ �jL/ þ dTs rs; ð20Þ

where

eSSp3 ¼ Sp3 � edd33dp; ess33 ¼ s33 � edd33d33; G ¼ Iþ ejj�1
33 dpd

T
pS

�1
pp ;

ejj33 ¼ j33 � dTpS
�1
pp dp;

edd33 ¼ ejj�1
33 ðd33 � dTpS

�1
pp Sp3Þ;

u ¼ u1
u2

� �
; LT

p ¼ o=ox1 0 o=ox2
0 o=ox2 o=ox1

� �
:

4982 J.-Q. Tarn, L.-J. Huang / International Journal of Solids and Structures 39 (2002) 4979–4998



The state equation for a linear piezoelectric material is obtained by arranging Eqs. (13)–(18) into a matrix
differential equation. For problems of generalized plane strain in which the field variables are independent
of x2 the state equation becomes

o

ox3

u1
u2
u3
/
r13

r23

r33

D3

266666666664

377777777775
¼

0 0 �o1 l14 s44 s45 0 0
0 0 0 l15 s45 s55 0 0
l31 l32 0 0 0 0 a37 edd33

l41 l42 0 0 0 0 edd33 �ejj�1
33

l51 l52 0 0 0 0 l31 l41
l52 l62 0 0 0 0 l32 l42
0 0 0 0 �o1 0 0 0
0 0 0 l84 l14 l15 0 0

266666666664

377777777775

u1
u2
u3
/
r13

r23

r33

D3

266666666664

377777777775
; ð21Þ

where

l14 ¼ �d14o1; l15 ¼ �d15o1; l31 ¼ a31o1; l32 ¼ a32o1;

l41 ¼ a41o1; l42 ¼ a42o1; l51 ¼ a51o11; l52 ¼ a52o11; l62 ¼ a62o11;

l84 ¼ j11o11; a31 a32½ � ¼ eSST
p3S

�1
pp H

T; a37 ¼ ess33 � ST
p3S

�1
pp
eSSp3;

a41
a42

� �
¼ ejj�1

33HS
�1
pp dp;

a51 a52
a52 a62

� �
¼ �HS�1

pp GH
T; H ¼ 1 0 0

0 0 1

� �
:

The output Eqs. (19) and (20) are

r11

r22

r12

24 35 ¼
b11 b12
b21 b22
b31 b32

24 35 o

ox1
u1
u2

� �
þ

b17
b27
b37

24 35r33 þ
b18
b28
b38

24 35D3; ð22Þ

D1

D2

� �
¼ � j11

j12

� �
/;1 þ

d14 d15
d24 d25

� �
r13

r23

� �
; ð23Þ

where

b11 b12
b21 b22
b31 b32

24 35 ¼ S�1
pp GH

T;
b17
b27
b37

24 35 ¼ �S�1
pp
eSSp3;

b18
b28
b38

24 35 ¼ �ejj�1
33 S

�1
pp dp:

It is understood that Eqs. (21)–(23) are applicable to each layer of the laminate; the subscript k has been
dropped. Note that both the antiplane and inplane field variables appear in the formulation.

3. Eigensolution and decay rate

We seek the solution to Eq. (21) in the form

u1 u2 u3 / r13 r23 r33 D3½ �k ¼ e�kx1 u v w u s13 s23 s33 K3½ �k
þ ecðx1�aÞ euu evv eww euu ess13 ess23 ess33 eKK3

� �
k
; ð24Þ

where k and c are the decay factors to be determined; u, v, w; . . . ;K3 and euu, evv, eww; . . . ; eKK3 are unknown
functions of x3. The first exponential function depicts the decay from the end x1 ¼ 0 with a decay rate k; the

J.-Q. Tarn, L.-J. Huang / International Journal of Solids and Structures 39 (2002) 4979–4998 4983



second depicts the decay from the end x1 ¼ a with a decay rate c. As in isotropic elasticity (Timoshenko and
Goodier, 1970) the decay rates k and c are real or in complex conjugate pairs and their superpositions give
the stress fields of the self-equilibrium state. As x1 increases, the influence of the first term decreases,
whereas the influence of the second term increases. It will be shown shortly that the decay rates from both
ends of the laminate are the same. For a semi-infinite strip, a ! 1, the second term vanishes, only the
decay from x1 ¼ 0 needs to be considered.

Substitution of Eq. (24) in Eq. (21) yields two sets of equations as follows:

d

dx3
Xk ¼ kAkXk;

d

dx3
eXXk ¼ �cAk

eXXk; ð25Þ

where the elements of the coefficient matrix Ak are given in Appendix A, and

Xk ¼ ku kv kw ku s13 s23 s33 K3½ �Tk ;

eXXk ¼ �ceuu �cevv �ceww �ceuu ess13 ess23 ess33 eKK3

� �T
k
:

It is easily observed that Eqs. (25) and (26) are precisely the same if c ¼ �k. This indicates that the decay
rates from both ends are the same and both equations result in the same through-the-thickness variation of
the field variables. Moreover, it tells us that if ki is a decay factor so is �ki. Consequently, we may treat
either Eq. (25) first part or Eq. (25) second part. In the following we treat Eq. (25) first part. Note that we
have arranged Eq. (25) in such a way that the coefficient matrices do not contain the decay factor. This
makes the eigensolution by means of matrix algebra easier.

The solution of the first equation in Eq. (25) is

Xkðx3Þ ¼ Pkðx3 � zk�1ÞXkðzk�1Þ; ð26Þ
where the fundamental transfer matrix (Pease, 1965) Pk is

Pkðx3 � zk�1Þ ¼ ekAkðx3�zk�1Þ: ð27Þ
The interfacial continuity conditions are satisfied by letting

Xkþ1ðzkÞ ¼ XkðzkÞ: ð28Þ
There follows

Xkþ1ðzkÞ ¼ Pkðzk � zk�1ÞXkðzk�1Þ ð29Þ
for k ¼ 1; 2; . . . ; n� 1.

Using Eq. (29) recursively yields

Xðx3Þ ¼ Tkðx3ÞXðhÞ; zk�1 6 x3 6 zk ð30Þ
where

Tkðx3Þ ¼
P1ðx3 � hÞ; k ¼ 1;
Pkðx3 � zk�1ÞTk�1ðzk�1Þ; k ¼ 2; 3; . . . ; n:

�
ð31Þ

Setting x3 ¼ �h in Eq. (30) gives

Xð�hÞ ¼ Tnð�hÞXðhÞ: ð32Þ
Consideration of the BC on x3 ¼ 	h is in order. To facilitate satisfaction of the BC, we partition Eq. (32)
into

Uð�hÞ
Sð�hÞ

� �
¼ Tuuð�hÞ Tusð�hÞ

Tsuð�hÞ Tssð�hÞ

� �
UðhÞ
SðhÞ

� �
; ð33Þ
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where

U ¼ k u v w u½ �T; S ¼ s13 s23 s33 K3½ �T:

Let us consider first both the top and bottom surfaces are traction-free and electric-insulated. The boundary
conditions demand SðhÞ ¼ Sð�hÞ ¼ 0. It follows that

Tsuð�hÞUðhÞ ¼ 0; ð34Þ

to which non-trivial UðhÞ exists if the determinant of the coefficient matrix vanishes,

jTsuð�hÞj ¼ 0 ð35Þ

from which the decay factor k, subsequently the UðhÞ, can be determined.
The primary state variables are determined from

Uðx3Þ ¼ Tuuðx3ÞUðhÞ; Sðx3Þ ¼ Tsuðx3ÞUðhÞ: ð36Þ

When both the top and bottom surfaces are grounded, Eq. (32) is partitioned into

bUUð�hÞbSSð�hÞ

" #
¼

bTTuuð�hÞ bTTusð�hÞbTTsuð�hÞ bTTssð�hÞ

� � bUUðhÞbSSðhÞ
" #

; ð37Þ

wherebUU ¼ ku kv kw D3½ �T; bSS ¼ s13 s23 s33 ku½ �T:

With the BC: bSSðhÞ ¼ bSSð�hÞ ¼ 0, the decay factor is determined from

jbTTsuð�hÞj ¼ 0; ð38Þ

and the primary state variables frombUUðx3Þ ¼ bTTuuðx3ÞbUUðhÞ; bSSðx3Þ ¼ bTTsuðx3ÞbUUðhÞ: ð39Þ

In a similar way, the decay factor and the internal field can be determined when one surface is electric-
insulated and the other is grounded. Once the primary state variables are determined, the other stress and
electric displacement components are

r11

r22

r12

24 35
k

¼ e�kx1

0@�
b11 b12
b21 b22
b31 b32

24 35
k

ku
kv

� �
k

þ
b17
b27
b37

24 35
k

s33k þ
b18
b28
b38

24 35
k

K3k

1A; ð40Þ

D1

D2

� �
k

¼ e�kx1 j11

j12

� �
k

kuk

�
þ d14 d15

d24 d25

� �
k

s13
s23

� �
k

�
: ð41Þ

This completes the determination of the decay factor and the eigen mode in a self-equilibrated piezoelectric
laminate. To evaluate the coupling effects on the attenuation rate, let us follow Miller and Horgan (1995) by
defining the characteristic decay length l as the length over which the field variables decay to 1% of their
values at x1 ¼ 0,

l ¼ ln 100=k: ð42Þ

The characteristic decay length is a measure of the distance from the end beyond which the end effect is
negligible. The smallest decay factor should be used in Eq. (42) to evaluate the characteristic decay length.
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4. Piezoelectric strips

Before computing the decay factor k and the internal field for a given material, it is informative to
examine the equations for a piezoelectric material of the orthorhombic system. Since the inplane and an-
tiplane deformation and stresses are uncoupled in the state of generalized plane strain of an orthotropic
elastic material (Lekhnitskii, 1981), one might presume that the antiplane field variables for generalized
plane strain of an orthorhombic piezoelectric material are immaterial as well. This proves to be incorrect.

Obviously, all the 3-D electromechanical variables enter the stage and the inplane and antiplane field
variables are coupled in a monoclinic piezoelectric strip. For piezoelectric materials of the orthorhombic
system of class mm2, the first equation in Eq. (25) reduces to

d

dx3

ku
kw
ku
s13
s33
K3

26666664

37777775 ¼ k

0 1 0 s44 0 0
�a31 0 0 0 a37 edd33
�a41 0 0 0 edd33 �ejj�1

33

a51 0 0 0 �a31 �a41
0 0 0 1 0 0
0 0 j11 0 0 0

26666664

37777775
ku
kw
ku
s13
s33
K3

26666664

37777775

0BBBBBB@ þ

0
0
0
0
0
d15

26666664

37777775s23

1CCCCCCA; ð43Þ

d

dx3

kv
s23

� �
¼ k

0 s55
1=s66 0

� �
kv
s23

� ��
þ d15

0

� �
ku

�
: ð44Þ

The output equations reduce to

r11

r22

� �
¼ e�kx1

,

�
� b11

b21

� �
kuþ b17

b27

� �
s33 þ

b18
b28

� �
K3

�
; r12 ¼ � e�kx1

s66
kv; ð45Þ

D1 ¼ e�kx1ðj11ku þ d15s23Þ; D2 ¼ e�kx1d24s13; ð46Þ

where

a31 ¼ ðess13s22 � ess23s12Þ=,; a41 ¼ ejj�1
33 ðd31s22 � d32s12Þ=,;

a37 ¼ ess33 þ ½s23ðess13s12 � ess23s11Þ � s13ðess13s22 � ess23s12Þ�=,;
a51 ¼ ejj�1

33 ðd2
32s

2
12 � d2

31s
2
22Þ=,2 � s22=,; , ¼ s11s22 � s212;

b11
b21

� �
¼ s22 þ ejj�1

33 ½s22ðd2
31s22 � d31d32s12Þ þ s12ðd2

32s12 � d31d32s22Þ�=,
�s12 � ejj�1

33 ½s11ðd2
32s12 � d31d32s22Þ þ s12ðd2

31s22 � d31d32s12Þ�=,

� �
;

b17
b27

� �
¼ ess23s12 � ess13s22ess13s12 � ess23s11

� �
;

b18
b28

� �
¼ ejj�1

33

d32s12 � d31s22
d31s12 � d32s11

� �
:

It is evident from Eqs. (43) and (44) that the field variables in the x1–x3 plane are associated with the
antiplane shear s23, and the antiplane deformation and shear stress are associated with the electrome-
chanical field in the x1–x3 plane through u. The inplane and antiplane field variables are coupled unless
d15 ¼ 0. For the orthorhombic system of class 6mm. Eqs. (43)–(46) are somewhat simplified but the d15
remains in presence and these equations are still coupled. Only in orthorhombic piezoelectric materials with
d15 ¼ 0 does a 2-D loading give rise to plane deformation and the antiplane shears r12, r23 and displacement
u2 are independent of the electric field. From the material properties of various piezoelectric materials listed
in Table 1 of Ruan et al. (2000), all of them have non-zero d15. This suggests that the applicability of a 2-D
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formulation for piezoelectric strips without accounting for the antiplane field variables is very limited. The
plane strain or plane stress assumption is invalid for electroelastic analysis in general.

To understand the Saint-Venant end effects in piezoelectric strips, we have computed the decay rate and
characteristic decay length for a strip of a PZT ceramics, a PVDF polymer, and an aluminum (Al) metal.
The material properties of PZT-5, PVDF, and Al used in the computation are given in Table 1. The
stiffnesses of PZT-5, Gr/Ep, and Al are in the same order of magnitude, whereas the stiffness of PVDF is
more than an order of magnitude smaller than that of Al, and the piezoelectric constants and permittivities
of PZT-5 are more than an order of magnitude larger than those of PVDF. The constitutive equations for
PZT and PVDF are similar to those for the orthorhombic system of class 6mm, with s16 ¼
s26 ¼ s36 ¼ s45 ¼ d14 ¼ d25 ¼ d36 ¼ j12 ¼ 0, s11 ¼ s22, s13 ¼ s23, s44 ¼ s55, s66 ¼ 2ðs11 � s12Þ, d15 ¼ d24,
d31 ¼ d32, j11 ¼ j22. Note that d15 is non-zero, one cannot assume plane strain or plane stress and disregards
the antiplane field variables. The numerical results show that antiplane shears and electric displacement D2

indeed arise in orthorhombic piezoelectric strips and affect the decay behavior. Taking the PZT-5 strip for
example, the first 10 decay rates and the characteristic decay length are given in Table 2, in which the results
of Ruan et al. (2000) are listed for comparison. The reference length for the dimensionless decay rates is
taken to be a half of the thickness as used in Ruan et al. The S and A in the table indicate the symmetric and
the antisymmetric mode, respectively, The M denotes the decay rate associated with the mechanical mode.
Note that all the decay rates due to antiplane modes are not obtainable and the characteristic decay lengths
are greatly underestimated based on the plane strain assumption. The discrepancy between the decay
lengths that account for and that neglect the antiplane deformation could be as much as 25%.

As stated before, the decay factor appears in pairs with the same magnitude of the positive and negative
real parts. The positive ones correspond to decay from x1 ¼ 0 and the negative ones correspond to decay
from the other end. In an Al strip there is no piezoelectric effect but electric conduction exists. In order to

Table 1

Material constants of selected materials

PZT-5 PVDF Gr/Ep Al

Elastic compliances (10�12 m2/N)

s11 16.4 441 5.5 14.29

s12 �5.74 �100 �1.5 �4.95

s13 7.22 �304 �1.5 �4.95

s22 16.4 504 97.1 14.29

s23 7.22 �318 �32 �4.95

s33 18.8 1134 97.1 14.29

s44 47.5 1818 348.4 38.46

s55 47.5 1695 139.5 38.46

s66 44.28 1449 139.5 38.46

Piezoelectric constants (10�12 C/N )

d15 584 �27 0 0

d24 584 �23 0 0

d31 �172 21 0 0

d32 �472 1.5 0 0

d33 374 �32.5 0 0

d36 0 0 0 0

Relative permittivities (k0 ¼ 8.85� 10�12 F/m)

k11=k0 1730 6.1 1730 1

k12=k0 0 0 0 0

k22=k0 1730 7.5 1730 1

k33=k0 1700 6.7 1730 1
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distinguish whether the smallest decay rate is indeed associated with the stress decay rather than the decay
of the electric field, we deliberately set dij ¼ 0 and kij ¼ 0 and dij ¼ 0 and kij 6¼ 0 for a piezoelectric material
to obtain hypothetical results that represent omitting of the piezoelectric effect completely ðdij ¼ 0, kij ¼ 0Þ
and omitting the piezoelastic coupling in particular ðdij ¼ 0, kij 6¼ 0Þ. By comparing the actual results with
the hypothetical ones, the modes that correspond to a purely mechanical mode (denoted by M), a purely
electric mode (denoted by E), and a coupling mode (denoted by C) can be identified. We also examine the
effects of the electric boundary conditions on x3 ¼ 	h on the decay by considering three types of the electric
BC, namely, both surfaces insulated (case 1), both surfaces grounded (case 2), and insulated on x3 ¼ �h and
grounded on x3 ¼ h (case 3).

Table 3 summarizes the results of the first five decay rates and the characteristic decay lengths, in which
the reference length is taken to be the thickness of the strip as symmetry with respect to the midplane is not
assumed. For Al the first mechanical mode is due to the antiplane deformation, the second one is due to the
inplane deformation. The decay rates obtained agree with the exact solution (Timoshenko and Goodier,
1970; Wang et al., 2000). In PZT the characteristic decay lengths for the mechanical mode are 1:576� 2h
(cases 1 and 2) and 3:153� 2h (case 3), in PVDF they are 1:642� 2h (all three cases). The three types of
electric boundary conditions result in the same decay rate and decay length for the mechanical mode in
PVDF and Al. In case the top surface is grounded and the bottom surface insulated, the decay length in
PZT is twice that of both surfaces insulated or grounded. This suggests that the unsymmetrical BC prolongs
the stress decay in materials with strong piezoelectric effects. Case 3 also yields the decay length twice those
of the electric modes in Al, PVDF and PZT.

In the case of a homogeneous orthorhombic piezoelectric strip, the characteristic equation derived from
Eq. (25) can be factorized as

ðl2 þ k11=k33Þðl2 þ s44=s66Þfl4 þ ½c11s55 � ð2þ c13s55Þc13=c33�l2 þ c11=c33g ¼ 0; ð47Þ
where cij are elastic constants of the material, related to the elastic compliances by

c11 ¼ ðs22s33 � s223Þ=D; c13 ¼ ðs12s23 � s13s22Þ=D; c33 ¼ ðs21s22 � s212Þ=D;
D ¼ s11s22s33 þ 2s12s23s13 � s22s213 � s33s213 � s11s223:

The decay rates corresponding to the electric and mechanical modes can be evaluated analytically. The ones
associated with

l2 þ k11=k33 ¼ 0 ð48Þ

Table 2

Stress decay in a PZT-5 layer, both surfaces grounded

Mode Present Ruan et al. (2000)

1 1:461 –

2 1.517 (M) –

3 1:857þ i1:079 (S) 1:943þ i1:098 (S)

4 1:857� i1:079 (S) 1:943� i1:098 (S)

5 2.920 –

6 3.033 (M) –

7 3:280þ i1:444 (A) 3:440þ i1:432 (A)

8 3:280� i1:444 (A) 3:440� i1:432 (A)

9 4.379 –

10 4.550 (M) –

Decay length 1:576� 2h 1:185� 2h

M: mechanical mode, S: symmetric mode, A: antisymmetric mode.

4988 J.-Q. Tarn, L.-J. Huang / International Journal of Solids and Structures 39 (2002) 4979–4998



are purely electric modes, and the decay rates for the electric field are given by

k ¼ npðk33=k11Þ1=2; ðcases 1 and 2Þ
np
2
ðk33=k11Þ1=2; ðcase 3Þ

(
; ð49Þ

where n ¼ 1; 2; . . .
The ones associated with

l2 þ s44=s66 ¼ 0 ð50Þ

are purely mechanical modes, and the decay rates are given by k ¼ npðs66=s44Þ, n ¼ 1; 2; . . .
The ones associated with

l4 þ ½c11s55 � ð2þ c13s55Þc13=c33�l2 þ c11=c33 ¼ 0 ð51Þ

are also the mechanical modes.
As far as stress decay is concerned, the decay length should be evaluated using the smallest decay rate

associated with a purely mechanical mode or a coupling mode. If the smallest one is associated with a
purely electric mode, it corresponds to decay of the electric field. In Table 3 the underlined decay rates
correspond to stress decay and were used in evaluating the characteristic decay length. The decay lengths
given in the parenthesis correspond to decay of the electric field.

Table 3

Decay rates and characteristic decay lengths for piezoelectric strips

Mode Case 1 Case 2 Case 3

PZT-5

1 2:921 (CSa) 2:922 (CAa) 1:461 (C)

2 3.033 (MAb) 3.033 (MAb) 3.033 (MAb)

3 3.714	 i2.158 (CSa) 3.715	 i2.158 (CSa) 3.715	 i2.158 (C)

4 5.840 (CAa) 5.841 (CSa) 4:381 (C)

5 6.066 (MSb) 6.066 (MSb) 6.066 (MSb)

Decay length 1:576� 2h ð1:576� 2hÞ 1:576� 2h ð1:576� 2hÞ 3:153� 2h ð3:153� 2hÞ

PVDF

1 2:805 (MAb) 2:805 (MAb) 1.646 (E)

2 3.283 (CSa) 3.287	 i2.070 (CSa) 2:805 (MAb)

3 3.285	 i2.076 (CSa) 3:292 (EAa) 3.286	 i2.072 (Ca)

4 5:610 (MSb) 5.610 (MSb) 4:923 (C)

5 6.543 (CAa) 5.768 (CAa) 5.610 (MSb)

Decay length 1:642� 2h ð1:403� 2hÞ 1:642� 2h ð1:401� 2hÞ 1:642� 2h ð2:798� 2hÞ

Aluminum

1 3:142 (EAa) 3.142 (EAa) 1:571 (E)

2 3:142 (MAb) 3:142 (MAb) 3:142 (MAb)

3 4.212	 i2.251 (MSa) 4.212	 i2.251 (MSa) 4.212	 i2.251 (MSa)

4 6.283 (ESa) 6.283 (ESa) 4.712 (E)

5 6.283 (MSb) 6.283 (MSb) 6.283 (MSb)

Decay length 1:466� 2h ð1:466� 2hÞ 1:466� 2h ð1:466� 2hÞ 1:466� 2h ð2:932� 2hÞ
M: mechanical mode, E: electric mode, C: coupling mode, S: symmetric mode, A: antisymmetric mode.

a Inplane mode.
bAntiplane mode.
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5. Piezoelectric laminates

As illustrations, we examine the Saint-Venant end effects in the active-sensory configuration in which
piezoelectric layers are integrated on one face to act as the sensor and on the other as the actuator. A
½0=0=90�s Gr/Ep composite laminate and an Al plate, both integrated with PZT and PVDF piezoelectric
layers on the top and bottom surfaces, are considered. The material properties of the Gr/Ep lamina used in
the computation are given in Table 1. Al and Gr/Ep are elastic materials with dij ¼ 0. The electric BC on
x3 ¼ 	h is assumed to be electric-insulated or grounded.

The decay rates and characteristic decay lengths for the ½0=0=90�s, ½PZT=0=90�s, and ½PVDF=0=90�s
laminated systems under three types of the electric conditions are shown in Table 4. The thickness of each
layer is taken to be equal. It is interesting to observe that when the top and bottom layers of the Gr/Ep
laminate are replaced by PZT layers, the characteristic decay lengths change from 2:849� 2h in all three
cases to 2:775� 2h in cases 1 and 2, and 3:185� 2h in case 3. Since the stiffnesses of PZT ceramic and GR/
Ep are comparable in magnitude, the changes are not very much. By contrast, when the top and bottom
layers are replaced by PVDF layers, the characteristic decay lengths change drastically from 2:849� 2h to
1:543� 2h in all three cases. The large reduction is reasonable in that the stiffness of PVDF polymer is
much lower than that of Gr/Ep. The soft PDVF layers act like energy absorbers in the system. To the
opposite, if the laminate is bonded by stiff layers, the stress disturbance may extend to a long distance from
the ends. In the extreme case of rigid layers, the disturbance affects the entire body.

Table 4

Decay rates and characteristic decay lengths for piezoelectric laminates

Mode Case 1 Case 2 Case 3

[0/0/90]s Gr/Ep

1 1:617 (MAa) 1:617 (MAa) 1.571 (E)

2 2.201 (MSa) 2.201 (MSa) 1:617 (MAa)

3 2.470 (MAb) 2.470 (MAb) 2.201 (MSa)

4 3.142 (EAa) 3.142 (EAa) 2.470 (MAb)

5 3.793 (MSa) 3.793 (MSa) 3.793 (MSa)

Decay length 2:849� 2h ð1:466� 2hÞ 2:849� 2h ð1:466� 2hÞ 2:849� 2h ð2:932� 2hÞ

[PZT/0/90]s
1 1:660 (MAb) 1:660 (MAb) 1:446 (C)

2 1.899 (CAa) 1.886 (CAa) 1.660 (MAb)

3 2.836 (CSa) 2.984 (CAa) 1.907 (C)

4 3.228	 i1.473 (CSa) 3.103	 i1.500 (CSa) 3.139	 i1.484 (C)

5 3.751 (MSb) 3.751 (MSb) 3.751 (MSb)

Decay length 2:775� 2h ð2:425� 2hÞ 2:775� 2h ð2:442� 2hÞ 3:185� 2h ð3:185� 2hÞ

[PVDF/0/90]s
1 2:990 (MAa) 0.261 (EAa) 0.185 (E)

2 3.843 (MAb) 2:990 (MAa) 2:990 (MAa)

3 4.468	 i1.590 (MSa) 3.843 (MAb) 3.843 (MAb)

4 4.563 (CSa) 4.467	 i1.595 (MSa) 4.468	 i1.593 (MSa)

5 4.656 (CAa) 4.602 (CSa) 4.581 (C)

Decay length 1:543� 2h ð1:009� 2hÞ 1:543� 2h ð17:619� 2hÞ 1:543� 2h ð24:959� 2hÞ
M: mechanical mode, E: electric mode, C: coupling mode, S: symmetric mode, A: antisymmetric mode.

a Inplane mode.
bAntiplane mode.
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Table 5

Decay rates and characteristic decay lengths for Al with piezoelectric layers

Mode Case 1 Case 2 Case 3

[PZT/Al/PZT]

1 0.160 (ESa) 3:183 (MAb) 0.113 (E)

2 3:183 (MAb) 3.490 (EAa) 3:183 (MAb)

3 3.500 (EAa) 4.149	 i2.205 (MSa) 3.494 (E)

4 4.149	 i2.209 (MSa) 6.361 (MSb) 4.149	 i2.207 (C)

5 6.361 (MSb) 6.981 (CSa) 6.361 (MSb)

Decay length 1:447� 2h ð28:760� 2hÞ 1:447� 2h ð1:320� 2hÞ 1:447� 2h ð40:705� 2hÞ

[PVDF/Al/PVDF]

1 2.182 (ESa) 3.432 (EAa) 1.311 (E)

2 3:480 (MAb) 3:480 (MAb) 3:480 (MAb)

3 4.659	 i2.492 (MSa) 4.659	 i2.492 (MSa) 4.185 (E)

4 4.802 (EAa) 6.861 (ESa) 4.659	 i2.492 (MSa)

5 6.960 (MSb) 6.960 (MSb) 6.960 (MSb)

Decay length 1:323� 2h ð2:111� 2hÞ 1:323� 2h ð1:342� 2hÞ 1:323� 2h ð3:512� 2hÞ
M: mechanical mode, E: electric mode, C: coupling mode, S: symmetric mode, A: antisymmetric mode.

a Inplane mode.
bAntiplane mode.

Fig. 2. Through-thickness variation of the first mechanical mode, antiplane deformation (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/

PVDF: (� � � � �)).
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Table 5 shows the decay rates and decay lengths for a homogeneous Al strip, and Al integrated with PZT
and PVDF piezoelectric layers on the top and bottom surfaces. The thickness of the layers is taken to be

Fig. 3. Through-thickness variation of the second mechanical mode, inplane deformation (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/

PVDF: (� � � � �)).
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Fig. 4. Through-thickness variation of the first electric mode, case 1 (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/PVDF: (� � � � �)).

Fig. 5. Through-thickness variation of the first electric mode, case 2 (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/PVDF: (� � � � �)).
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Fig. 6. Through-thickness variation of the first electric mode, case 3 (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/PVDF: (� � � � �)).

Fig. 7. Through-thickness variation of the second electric mode, case 1 (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/PVDF: (� � � � �)).
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Fig. 8. Through-thickness variation of the second electric mode, case 2 (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/PVDF: (� � � � �)).

Fig. 9. Through-thickness variation of the second electric mode, case 3 (Al: (––); PZT/Al/PZT: (- -�- -); PVDF/Al/PVDF: (� � � � �)).

J.-Q. Tarn, L.-J. Huang / International Journal of Solids and Structures 39 (2002) 4979–4998 4995



0:1h=1:8h=0:1h. As compared with the results in Table 3, the characteristic decay lengths change from
1:466� 2h for a homogeneous Al strip to 1:323� 2h for the [PVDF/Al/PVDF] system and to 1:447� 2h for
the [PZT/Al/PZT] system. The decay length reduces somewhat due to integrating the PVDF and PZT
layers; a larger reduction is observed in the [PVDF/Al/PVDF] system. As for the decay length for the
electric field, due to the low permittivity and zero piezoelectric constants of Al, it increases considerably, for
example, it could change from 1:466� 2h (cases 1 and 2) and 2:932� 2h (case 3) in the homogeneous Al
strip (see Table 3 for the electric mode) to 28:760� 2h (cases 1 and 2) and 42:705� 2h (case 3) in the [PZT/
Al/PZT] system to reach a self-equilibrated electrostatic state.

To illustrate the piezoelectric effects and show the influence of the electric boundary conditions on the
internal fields, we plot in Figs. 2–9 the through-thickness variations of the primary state variables at the
edge x1 ¼ 0 of the homogeneous Al and the [PVDF/Al/PVDF] and [PZT/Al/PZT] systems under three
types of the electric boundary conditions. As Al is elastic, the piezoelectric effects can be clearly observed by
comparing the internal fields in the Al, with and without integrating the piezoelectric layers. Fig. 2 shows
the through-thickness variation of the first mechanical mode due to the antiplane deformation. All the
inplane variables are absent. The effects of piezoelectric coupling lead to non-zero electric displacement in
the PZT layers. The field variables in the Al layer of the three systems under three types of the electric
boundary conditions are almost the same. Fig. 3 shows the through-thickness variation of the first me-
chanical mode due to the inplane deformation. The mode consists of a real part and an imaginary part. All
the antiplane variables are absent. The mechanical and the electric fields do not interact in the homoge-
neous Al layer. Since the through-thickness variations of the field variables under three types of the electric
boundary conditions are alike (except for the transverse electric displacement), only the case of insulated
surfaces (case 1) is presented. To show the piezoelectric effects on the electric field, we plot in Figs. 4–6 the
first electric mode for case 1, case 2 and case 3. Again, the electric and the mechanical fields do not interact
in the homogeneous Al layer. As a result of introducing the piezoelectric layers in the system, changes of the
electromechanical fields in the Al, albeit small (in the order of 10�3 to 10�4), arise because of the interfacial
continuity. Marked changes of the internal field from that of the homogeneous Al occur in the second
mode, as shown in Figs. 7–9. Changes in the displacement and stress in the Al due to integrating the PVDF
layers on the surfaces are negligible, but they are significant due to integrating the PZT layers. In all cases
the electric boundary conditions greatly affect the electric field through the thickness, but the displacement
and stress fields in the Al of the three systems do not differ appreciably under different electric boundary
conditions. The observations confirm the expectation that the mechanical field in a non-piezoelectric ma-
terial should not be significantly affected by integrating a thin, weak piezoelectric layer on the surfaces.
Thus, in dealing with the mechanical responses of the laminate with piezoelectric layers, it is reasonable to
neglect the contribution of the stiffness of the weak piezoelectric layers on the surface for simplification, but
the contribution of the stiff piezoelectric layers cannot be ignored. The electric field depends heavily on the
electric boundary conditions, an assumed through-thickness distribution of the electric potential may lead
to serious errors in evaluating the electromechanical field in the body.

6. Conclusions

The study provides an analytic solution for the stress decay in 2-D multilayered piezoelectric strips and
laminates. The decay rates and the characteristic decay lengths in homogeneous strips and composite
laminates have been evaluated for typical piezoelectric materials in the context of generalized plane strain.
It has been shown that the formulation based on the plane strain or plane stress assumption is invalid
except for a very special class of the orthorhombic piezoelectric material. The inplane field is coupled to the
antiplane field which cannot be ignored in general even though the piezoelectric strip or laminate is sub-
jected to a 2-D electromechanical loading. In evaluating the decay length in a piezoelectric material, at-
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tention must be paid to distinguishing various modes lest the smallest eigenvalue should correspond to
decay of the electric field rather than stress decay. The analysis shows that the electromechanical interaction
has significant effects on the internal field in a self-equilibrated strip or laminate. The Saint-Venant end
effects are more pronounced and the decay length far-reaching in homogeneous strips or composite lam-
inates with stiff piezoelectric layers than with soft piezoelectric layers.
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Appendix A

The material matrices in Eq. (1) are

S ¼

s11 s12 s13 0 0 s16
s12 s22 s23 0 0 s26
s13 s23 s33 0 0 s36
0 0 0 s44 s45 0
0 0 0 s45 s55 0
s16 s26 s36 0 0 s66

26666664

37777775; d ¼

0 0 d31
0 0 d32
0 0 d33
d14 d24 0
d15 d25 0
0 0 d36

26666664

37777775; j ¼
j11 j12 0
j12 j22 0
0 0 j33

24 35:

The coefficient matrix in Eq. (25) is

Ak ¼

0 0 1 d14 s44 s45 0 0
0 0 0 d15 s45 s55 0 0

�a31 �a32 0 0 0 0 a37 edd33

�a41 �a42 0 0 0 0 edd33 �ejj�1
33

a51 a52 0 0 0 0 �a31 �a41
a52 a62 0 0 0 0 �a32 �a42
0 0 0 0 1 0 0 0
0 0 0 j11 d14 d15 0 0

266666666664

377777777775
k

:
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